大学生课外阅读问卷调查的总结怎么做-大学生课外阅读问卷调查的总结怎么做的
什么是深度学习,怎么学习深度学习?
您好,针对您的问题,我作为有六年教学经验的老师给出以下答案:
所谓的深度学习是与普通学习对比而言的,就字面的意思可以看出,这种方式的学习要求我们做到深度化,而不是肤浅的了解相关的知识内容,在当今时代,竞争越发激烈,更要求我们把专业领域的事情做到极致,这就进一步让我们的研究要有深度和广度。我认为深度学习应该做到以下几点:
首先要学会合理的制定目标,确定学习方向。要学会梳理自身学习情况,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,合理的分配时间,有针对性、具体的去一点一点的去攻克、落实。
其次要学习掌握速读记忆的能力,提高学习复习效率。记忆力、注意力、思维、理解力等都要相应的提高,最终提高学习、复习效率,取得好成绩。
再者要学会整合知识点,这点很重要。把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,会让你的大脑有条不紊。要学会把新知识和已学知识联系起来完善知识体系。
最后要学会反思、归类、整理出对应的解题思路。错题要整理收集,即使订正和加深理解。
深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。典型的深度学习模型有卷积神经网络( convolutional neural network)、DBN和堆栈自编码网络(stacked auto-encoder network)模型等。
入门深度学习最重要的就是需要掌握三大基本网络框架,即CNN卷积神经网络、RNN循环神经网络和GAN对抗神经网络。即CNN卷积神经网络:最流行的深度学习模型,已成为当前图像识别领域的研究热点。主要应用于图像分类、目标检测、人脸识别、风格迁移等;RNN循环神经网络:应用领域最广泛的深度学习模型,只要考虑时间先后顺序问题的都可以使用RNN来解决,常见的应用领域有:自然语言处理、机器翻译、语音识别、音乐合成、聊天机器人、推荐算法等;GAN对抗神经网络:这是非监督式学习的一种方法,GAN的应用范围较广,扩展性也很强,主要应用于图像生成、数据增强和图像处理等领域。
可以通过互联网寻找相应的公开课进行上述内容的学习,并且通过一些开源项目进行练习。
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。
把学习结构看作一个网络,则深度学习的核心思路如下:
①无监督学习用于每一层网络的pre-train;
②每次用无监督学习只训练一层,将其训练结果作为其高一层的输入;
③用监督学习去调整所有层;
深度学习在大数据集上的表现比其他机器学习(ML)方法都要好(稍后将讨论例外情况)。这些又如何转化为现实生活中的情形呢?深度学习更适合无标记数据,因而它并不局限于以实体识别为主的自然语言处理(NLP)领域。[1]
学习可分为浅学习和深学习,就像阅读可分为泛读和精读一样。深度学习说的就是学习的一种程度。
学习通常都是由浅入深的,一层一层进入,一步一步提升的。下面是根据当下很多人的学习现状,例举的几点关于深度学习的建议。
1、首先要学会对信息进行分级。
当下我们很多信息的来源都是一些自媒体内容,如果你关注或订阅了大量低质、无用的自媒体,这不仅浪费了你的大量时间,同时也大大消耗你的精力。所以,要学会“分级”,哪些信息是要认真阅读的,哪些是可以批量、大致看看的,做出分级,并且在关注/订阅数上也要控制。
2、其次,不要用“收藏”取代学习。
很多文章或课程平台都有提供收藏功能,它其实是针对人性去设计的,让我们误以为存下来了就等于知识到手了、学会了。只是不停的收藏没有用,当你阅读完一篇文章或资料后,觉得对自己有用、收藏后,一定要找一个时间进行系统的学习、思考、整理。比如每天收藏的内容,晚上就把它消化;或者以周为单位,专门抽出一段时间对收藏的内容进行系统学习。
3、其三,学习掌握“快速阅读”的能力。
快速阅读是一种根据材料、需要、时间、精力和内外部环境,有目的、有要点地进行阅读的方法。快速阅读的目的是“透过快速阅读快速建立书本、内容的知识地图,找到重要内容、挖掘出对自己有用的内容、产生“问题意识”,从而促使我们更好地完成阅读,以及对部分内容进行精读(拿一本书来说,重要的内容通常只占全书的两成左右)。
快速阅读能力的掌握,不断的阅读和积累是一方面,也就是多读,多读可以完善你的识文基础(词汇、知识背景、阅读技巧等),从而提高你的阅读速度。另外也需要专门的训练,比如“精英特快速阅读训练”,通过软件训练掌握到一两千字每分钟的阅读速度一般都非常容易就可以做到(正常未经过训练的人阅读速度在200-300字每分钟)。
4、其四,找到学习方向或目标,然后进行“主题阅读/学习”。
首先是选择学习方向或目标,毕竟这世界的知识太多太庞杂,我们一辈子也学不完,事实上我们也并不需要全部了解它,只要吃那冰山的一小角,就够我们过好这辈子了。所以,要学会根据自己的人生目标、成长需求、工作需要等,去明确自己的学习目标,然后通过实际的学习去逐渐完善自己的知识体系。
有了学习方向、主题之后,就可以进行广泛搜集相关书籍资料,进行快速阅读和精读。快速阅读帮我们快速广泛的学习,精读帮我们进一步完善学习。具体的方法比如:①根据你的学习目标,整理清楚你需要解答的问题,或者想了解学习的内容;②然后找到与你主题相关的书籍、资料;③进行快速阅读,找出书籍、资料中以你主题相关的章节或内容;④进行精读,找出或列出一些可以把我们的问题说的很明白的内容或问题;⑤比较分析,不同书里、不同作者对同一问题可能会有各式各样的意见,或者对于不同问题,不同作者都提出了同样的方法意见;通过比较、分析、思考,解答自己问题、完善自己的知识体系。
什么是深度学习?
深度学习:在批判性思维下去学习,通过整理、反思、总结等步骤去寻找解决问题的方式,并在这个过程中得到持续的学习。
举个栗子,来理解一下这个概念。比如现在有小明、小红、小李三位同学,他们在学习中是不一样的。具体表现如下:
- 小明同学 属于被动学习,要在老师和家长严格要求下,才能去写作业,背诵知识点。对书本上的知识点,大部分是通过笔记和背书来达到记忆的目的,没有去完全理解,自我学习反馈机制没有形成闭环。
- 小红同学 属于半主动学习,能够提前预习知识点,也能够根据课后作业发现自己错误的知识点,然后再去找同等类型题,加强自己对知识点的理解。能够形成闭环,但是闭环过小。
- 小李同学 属于主动学习,能够根据自己学习的知识点,对知识进行归纳、总结、输出。相当于能够把知识点串联起来,通过自主研究,把内容研究的更深刻。同时在学习中形成自己的观点,能够把这类问题总结出来,并且能够用自己的话讲解清楚。
那么,这三位同学里,小李同学就属于在学习中深度学习,不流于表面。能够通过不断的总结,归纳,整理,试验,自我反馈,并且最后能够输出自己的观点。
怎么学习深度学习?
如何锻炼自己深度学习的能力?我认为需要做到以下四点:
- 高效的沟通能力 深度学习并不代表你闭门造车,可以通过合作的方式,找到问题的答案。那么高效的沟通能力需要你能够耐心的聆听别人的观点,同样也能够高效的表达出自己的观点。那么这样的沟通,能够让你们接触到更多的思路。同样也为你的深度学习,提供了思路来源。
- 自主能力 所有的深度学习,代表你自己要有足够的自我管控能力。比如上网课的时候,如果拿起手机去刷朋友圈,这节课你就没办法去做到有效学习,更何况深度学习那。另外深度学习,要求你能够自主去学习,通过自己主动总结归纳去学习,甚至能够输出优质内容,才叫深度学习。
- 求知思维能力 能够在学习中获得归属感和成就感,从而驱动你去不断的学习。比如你通过学习,能够持续在自己感兴趣领域拿奖。这样就能让你的内驱力更强劲,从而让你的求知欲望更加强烈。
- 内容掌控能力 深度学习代表你能够熟练的应用自己学习的内容。这里不仅要求对自己学习的内容很熟悉,还要能够去应用,避免出现纸上谈兵的情况。也就是一定要通过实践,把自己学习的内容应用在实际上。
写在最后
深度学习概念很高大上,其实就是代表你学习不能流于其表,要学到本质。另外如何深度学习那,可以通过老师提供的4种方式去锻炼一下,当然还有很多方法去锻炼,比如通过番茄法时间管理,让自己进入深度学习的状态。
以上,仅代表个人观点,如有不足,欢迎各位友友指正!
关注超神胡老师,我们一起变得更优秀!!!
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.beizi123.com/post/6541.html发布于 2024-10-04